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Abstract

The aim of the paper is the study of transitive Lie algebroids with the trivial 1-rank adjoint bundle
of isotropy Lie algebrag = M x R. We show that a locally conformal symplectic (I.c.s.) structure
defines such a Lie algebroid, so our algebroids are a natural generalisation of |.c.s. structures. We
prove that such a Lie algebroid has the Poincaré duality property for the Lie algebroid cohomology
(TUIO-property) if and only if the top-dimensional cohomology space is non-trivial. Moreover, if
an algebroid is defined by an I.c.s. structure, then this algebroid is a TUIO-Lie algebroid if and only
if the associated I.c.s. structure is a globally conformal symplectic structure.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Lie algebroids play an important role in geometry. They appear as naturally associ-
ated to many well-known and important geometrical objects like G-principal fibre bundles,
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TC-foliations, Poisson and Jacobi manifolds or singular foliationf] ¢f0-12,17,18,20,21]
Moreover, a Lie algebroid is naturally associated to any Lie pseudogroup. The cohomol-
ogy ring defined by a Lie algebroid is a suitable setting for characteristic classes of such
a geometrical structure—it generalises the classical theory of characteristic classes, cf.
[2,3,11,13,16] Therefore, we think that, it is important to study the properties of this coho-
mology ring, in particular the Poincaré duality property. In this respect, the second author
proved the following theorenf15].

Theorem 1.1. LetA = (A, [-, -], y) be a transitive Lie algebroid on a connected oriented
m-manifold M and let

0—>g— ASTM = 0. (1.1)

be the Atiyah sequence of A. Assume that

(a) the isotropy Lie algebrag,, are unimodulay
(b) there exists a non-singular cross-sectiore Sec/\" g,n = rankg, invariant with
respect to the adjoint representation
then the family of bilinear homomorphisms

P i HK (M) x HY RO > R, (9], [¥) - /M fae®nw

(k =0,1,...,n 4+ m) yields a Poincaré duality? : Ha(M) x Ha (M) — R (for
the fibre integral[(A,S), see[14]). In particular, if M is, in addition compact then
the cohomology algebr&l’; (M) of real A-differential forms is finite-dimensional and
satisfies the Poincaré duality

The transitive Lie algebroid fulfilling properties (a) and (b) from the above theorem is
called aTUIO-Lie algebroid[14] (transitive unimodular invariantly orient§dFor exam-
ples of TUIO-Lie algebroids of some principal bundles, non-closed Lie subgroups and
TP-foliations se¢l5].

The second author discovered a very important fact that for the Lie algeHrcid
A(M, F) associated to a TC-foliatiosf on a manifoldM, there is an isomorphism of
differential graded algebra®(A(M, F)) = 2,(M, F) [15, Theorem 6.10]Therefore,
the cohomology algebrél 4y, 7 (W) of the Lie algebroidA (M, F) satisfies the Poincare
duality if and only if the basic cohomology of the foliated manif@id, ) satisfies the
Poincaré duality ¥ is the basic manifold ofM, F)). Additionally, in compact orientable
case forg = codimFHY(M/F) = HZ(M,]—)(W) =0orR.

The Poincaré property is a very important one for a transversely orientable Riemannian
foliation Fon a compact manifoldif as the following conditions are equival¢4f9,19,22]

(1) the basic cohomolog§{(M/F) satisfies the Poincaré duality;
(2) HY(M/F) #0;
(3) the foliationF is minimalizable.

It is well known that on the total spadg of the principal bundleB(M, SQq); F) of or-
thonormal frames of the normal bundle Bf there exists a foliatiotF; whose leaves are
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holonomy coverings of leaves @f. Moreover, this foliation is transversely parallelisable.
Its codimension is equal 9+ g(g — 1)/2 andHY(M, F) = HIt14=D/2(B F), cf. [5].
Let Ar, be the Lie algebroid of the foliatioft;. Combining the above results we have the
following equivalence:

e The foliationF is minimalisable if and only ifA 7, is a TUIO-Lie algebroid.

The epimorphy of the fibre integrdl 4 ) : Q04 o (M) — 2°7"(M) [14, Prop. 4.2.1(e)]
easily gives the following implicatiofi 5] (by assuming the compactness and the orientabil-
ity of M):

AisaTUIO-Lie algebroid= H "™ (M) # 0. (1.2)
(Remark:Theorem 1.Yields more:H; " (M) = R).

Open question: Can the implication ir{1.2) be changed into the equivalence?

The paper is dedicated to the study of transitive Lie algebroids with the trivial 1-rank
adjoint bundle of isotropy Lie algebrgs= M x R. We discover that a locally conformal
symplectic (l.c.s.) structure defines such a Lie algebroid. We prove that this algebroid is
a TUIO-Lie algebroid if and only if the associated I.c.s. structure is a globally conformal
symplectic structure.

2. Main results

Werecal[11,14]thata connectioh : TM — A inatransitive Lie algebroid determines
a covariant derivativ¥ in the adjoint bundlg by the formulaVyv = [AX, V], v € Secg.
If the structural Lie algebrag;, are abelian, then to all connectionghere corresponds the
same covariant derivativé in g, called thercanonicalor characteristi¢c andV is flat.
Each flat covariant derivative in = M x R is of the form

Vxf=0xf+wX)-f

wherew is a closed 1-differentiable form af. Such closed one forms define new coho-
mology operator§5,8].
According to the general structure theorfgii,17], we obtain:

e Eachtransitive Lie algebroid o¥f with a trivial adjoint bundleg = M x R is isomorphic
to
A=(MxR)®TM (2.1)

withy = pr, : (M x R@TM — TMas the anchor and the bracket{ in Sec A defined
via some flat covariant derivativé in M x R and a 2-form2 e £22(M) fulfilling the
Bianchi identityV 2 = 0 in the following way:

[(£X). (@ D] =(-2X,Y)+Vxg— Vy f[X,Y].

The flat covariant derivativ¥ is then characteristic.
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Therefore, the conditioW 2 = 0 is equivalent to €2 = —w A £2. Hence a transitive Lie
algebroid with trivial adjoint bundle is determined by the following data: a closed 1-form
w and a 2-form2 such that @ = —w A £2.

According to[6], the pair(—w, £2) determining Lie algebroi¢?.1)is precisely an Il.c.s.
structure on our manifold provided that the 2-foghis non-degenerate. Therefore our
transitive algebroid of rank 1 are a natural generalisation of the I.c.s. structure. When the
1-formwis exact the structure is called globally conformal symplectic. For more information
about these structures, 46e-8,23]

If @ is a closed 1-form oM, it defines an operator (s§& 8])

d*: 2" (M) — T (m, y=>dy+any.
Obviouslyd® d* = 0 and the corresponding cohomology we denotédfjyM).

e If two forms o« ando’ are cohomologous iIHéR(M), then H; (M) is isomorphic to
H* (M).
o

For completeness, we show this brieflylf= a+dg/¢, ¢ > 0,thenthe linearisomorphism
oncyclesZ, — Zy,y — v/, transformsi®-exact forms inta/® -exact forms giving an
isomorphism on cohomology. Notice that, the inverse homomorphism is givéty by
Zo, Y = oY =9y /(1/p), anda = o’ — dp/p = o + d(1/9)/(1/¢). In particular ifa is
an exact form, the; (M) = Hjr(M).

The second fundamental theoremdsicohomology is the following (it was discovered
by Guedira and Lichnerowid8], for a short elementary proof sg&).

Theorem 2.1. If « is not exac{M is connected and orientahldimM = m, but M can be
compact or nat thenH}' (M) = 0, i.e. the following differential equation

A=dy+anry
has a global solutiory € £2"~1(M) for each m-formA e 2(M).

With this notation in mind, we prove the following theorem.

Theorem 2.2. Let M be a connected orientable m-manifoldVifs a flat covariant deriva-
tiveing = MxRandVy f = dx f+w(X)- f, for a closedL-differential formw e (M),
then

(a) the Lie algebroid Aseg(2.1), is a TUIO-Lie algebroid if and only if the form is exact
in particular, if HX(M) = 0, then A is a TUIO-Lie algebroid

(b) Hy™™ (M) = H", (M),

(©) HY"(M) = H™,, .(M).

The above theorem permits us to demonstrate our main result, i.e. the following theorem.

Theorem 2.3. Let M be a compact orientable m-manifold and let A be a transitive Lie
algebroid with trivial 1-rank adjoint bundle of isotropy Lie algebras= M x R. Then A
is a TUIO-Lie algebroid if and only it/ (M) # 0.
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Proof. We have only to demonstrate that the conditiéti™” (M) = 0 implies thatA is a
TUIO-Lie algebroid. IfH3 (M) # 0. Theorem 2.2nsures thali”, (M) # 0. Inthat case
the 1-form—w must be exact as for non-exact 1-fora?8’' (M) = 0, cf.[6,8]. So according
to Theorem 2.2s the fornw is exact, the Lie algebroid is a TUIO-Lie algebroid. O

For local conformally symplectic structures we have the following corollary.

Corollary 2.1. Let(w, £2) be an l.c.s. structure on M. Then the associated transitive Lie
algebroid of ranKLis a TUIO-algebroidif and only ifthe l.c.s. structure is a global conformal
symplectic structure

3. Proof of Theorem 2.2

First we have to show that the transitive Lie algebf@id )described above is a TUIO-Lie
algebroid if and only ifw is exact. If f is a dy-invariant, thenf is V-constant and, by
assuming thaf is non-singular, we obtai@ = d(— In( f)). Conversely, itv = d(f), then
f = e~/ is a non-singuland,-invariant cross-section gf = M x R.

Denote by py : (M x R) @ TM — M x R the projection onto the first factor. Lef e
the exterior derivative ofi-differential formss24 (M) = Sec/\ A*. For a homomorphism
of Lie algebroidsF : A’ — A overt : M’ — M, the pullback of differential forms
F* : Q24(M) — 24/(M') is defined by F*®),(v1, ..., v) = ¥ix(Fus, ..., Fy) and
the following equalities* (¥ A @) = FXW A FX®, F*(d %) = dy () hold.

Represent the algebra afdifferential forms forA = (M x R & TM as the skew tensor
product of the anticommutative graded algebras

24(M) = Sec(A(M x R)* @ AT*M) = AR* ® 2(M),

where A\ R* is the exterior algebra over a one-dimensional graded vector space (homo-
geneous of degree 1). Therefore, edkht- 1)-form &%+ ¢ 2% (M) has the unique
representation of the form:

@k-i-l =1® ¢k+l + 1* ® (pk, (31)

whereg* and¢**1 are differential forms oM/ of degreest andk + 1, respectively, and
1* = idg. Clearly, W 1 = y*pflandl* @pt = pri¥ (e*)Ay* ¢* for the cross-section
e* of M x R* defined bys* (x) = 1*. The structure of the skew tensor product of the
anticommutative graded algebrAsR* ands2(M) is given by

(1®(pk+l+ 1* ®¢k) A (1®(pl+1+ 1* ®§01)
=1® ((pk+l A wH’l) + 1* ® ((pk A I//l+l + (_1)k+l(pk+l A 1pl)

Via representatiof.1), we easily show that the differentiakdn A\ R* ® 2(M) is given
by

dl® ¢ +1* @ ¢ ) =1® (A" + 2 A " D +1* @ (0 A oL — dp* 1),
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To see this, we have, at first,

da(1® ¢") = da(y*¢") = y*(dg") = 1@ do*
and

da(l* ®@ 1) =da(pri (™) =182+ 1* Q0.

Indeed,

da(pry (N (£ X), (8. 1))
=dxg — Iy f — pry (AL X, (. DD
= dxg — Iy f — PrE(e™) (=X, Y) + Vxg — Vy £[X, Y])
=dxg — dyf — (—2(X,Y) + Vxg — Vy )
=dxg—dyf+ (X, V) — (xg+w(X) 9+ f+w®) - f
=X,V -0X)  gto®) - f
= Q(X, ) + pri(e®) Apri (@) (£ X), (g, 1))
=12+ 1* ®w)((£X), (g V).
So

da(1®¢* +1* @ ¢ Y
=da(1®¢) +da(F @D A AR
=10de" +da1* @D A L@ " H - 1* @D Adal@ "™
=19dd + 1@ 2+1* @) A1 H - 1*@ D Aledd ™
=10 e + QA H+1* @ (A" — 1* @ dgft
=1Q (dpf + 2 A " + 1% ® (0 A "1 — dp L.
We look at the graded algebfa R* ® £2(M) as follows:

AR* ® 2M) = R ® 2% (M) & R* ® 2*"L(M)) = 2% (M) & 2* (M),
10 ¢ +1* @ ¢* s (o5, oD
(@, Y A @5, pFY = (KA YL oF A gt b (— DRI Ay,

Therefore the exterior derivative on the levelkeforms is then given by the formula

3

di : 2 @ 2 — 2 @ 2F (M),
da(e®, o h = (A" + 2 A " o A gt —dgh ).

In particular, d (¢*, ¢*=1) = 0ifand only if dp* — 2 A *Land dp* L = w A ¢F 1.
Letm = dimM. The maximal degree of-differential forms isn + 1:

it = "M ® 2"(M) = 0® 2" (M) = 2" (M)

and
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d} 1 QRO = 2" (M) & 2N M) — Q" (M) = 23,
(wm’ (pm—l) — oA wm—l _ d(pm—l'

Put

a1 L) — K (M, P @ A L dgf L
Clearlyd = —d~® andd od = 0,

HYP (M) = H™(2(M), d) = H™,(2(M), d)

ande‘”“(M) does not depend on the 2-forfh
Analogously

HY TN M) = HY(2(M), d) = H”,, (2(M), d)
which ends the proof.
Therefore,HZ*l(M) = 0 if and only if, for eachm-form A € 2™ (M), there exists an

m — 1-formg € 2"~1(M) such thatA = w A ¢ — do.
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