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Abstract

The aim of the paper is the study of transitive Lie algebroids with the trivial 1-rank adjoint bundle
of isotropy Lie algebrasg ∼= M×R. We show that a locally conformal symplectic (l.c.s.) structure
defines such a Lie algebroid, so our algebroids are a natural generalisation of l.c.s. structures. We
prove that such a Lie algebroid has the Poincaré duality property for the Lie algebroid cohomology
(TUIO-property) if and only if the top-dimensional cohomology space is non-trivial. Moreover, if
an algebroid is defined by an l.c.s. structure, then this algebroid is a TUIO-Lie algebroid if and only
if the associated l.c.s. structure is a globally conformal symplectic structure.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Lie algebroids play an important role in geometry. They appear as naturally associ-
ated to many well-known and important geometrical objects like G-principal fibre bundles,
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TC-foliations, Poisson and Jacobi manifolds or singular foliations, cf.[1,10–12,17,18,20,21].
Moreover, a Lie algebroid is naturally associated to any Lie pseudogroup. The cohomol-
ogy ring defined by a Lie algebroid is a suitable setting for characteristic classes of such
a geometrical structure—it generalises the classical theory of characteristic classes, cf.
[2,3,11,13,16]. Therefore, we think that, it is important to study the properties of this coho-
mology ring, in particular the Poincaré duality property. In this respect, the second author
proved the following theorem,[15].

Theorem 1.1. LetA = (A, [[ ·, ·]] , γ) be a transitive Lie algebroid on a connected oriented
m-manifold M and let

0 → g → A
γ→TM → 0. (1.1)

be the Atiyah sequence of A. Assume that

(a) the isotropy Lie algebrasg|x are unimodular,
(b) there exists a non-singular cross-sectionε ∈ Sec

∧n g, n = rankg, invariant with
respect to the adjoint representation,

then the family of bilinear homomorphisms

Pk : Hk
A(M)×Hn+m−k

A,c (M) → R, ([Φ], [Ψ ]) �→
∫
M

(A,ε)Φ ∧ Ψ

(k = 0,1, . . . , n + m) yields a Poincaré dualityP : HA(M) × HA,c(M) → R (for
the fibre integral (A,ε), see[14]). In particular, if M is, in addition, compact, then
the cohomology algebraH∗

A (M) of real A-differential forms is finite-dimensional and
satisfies the Poincaré duality.

The transitive Lie algebroid fulfilling properties (a) and (b) from the above theorem is
called aTUIO-Lie algebroid[14] (transitive unimodular invariantly oriented). For exam-
ples of TUIO-Lie algebroids of some principal bundles, non-closed Lie subgroups and
TP-foliations see[15].

The second author discovered a very important fact that for the Lie algebroidA =
A(M,F) associated to a TC-foliationF on a manifoldM, there is an isomorphism of
differential graded algebrasΩ(A(M,F)) ∼= Ωb(M,F) [15, Theorem 6.10]. Therefore,
the cohomology algebraHA(M,F)(W) of the Lie algebroidA(M,F) satisfies the Poincaré
duality if and only if the basic cohomology of the foliated manifold(M,F) satisfies the
Poincaré duality (W is the basic manifold of(M,F)). Additionally, in compact orientable
case forq = codimFHq(M/F) = H

q

A(M,F)(W) = 0 orR.
The Poincaré property is a very important one for a transversely orientable Riemannian

foliationF on a compact manifoldM as the following conditions are equivalent[4,9,19,22]:

(1) the basic cohomologyH(M/F) satisfies the Poincaré duality;
(2) Hq(M/F) 
= 0;
(3) the foliationF is minimalizable.

It is well known that on the total spaceB of the principal bundleB(M,SO(q);F) of or-
thonormal frames of the normal bundle ofF, there exists a foliationF1 whose leaves are
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holonomy coverings of leaves ofF. Moreover, this foliation is transversely parallelisable.
Its codimension is equal toq + q(q − 1)/2 andHq(M,F) = Hq+q(q−1)/2(B,F), cf. [5].
LetAF1 be the Lie algebroid of the foliationF1. Combining the above results we have the
following equivalence:

• The foliationF is minimalisable if and only ifAF1 is a TUIO-Lie algebroid.

The epimorphy of the fibre integral(A,ε) : Ω∗
(A,ε)(M) → Ω∗−n(M) [14, Prop. 4.2.1(e)]

easily gives the following implication[15] (by assuming the compactness and the orientabil-
ity of M):

A is a TUIO-Lie algebroid⇒ Hn+m
A (M) 
= 0. (1.2)

(Remark:Theorem 1.1yields more:Hn+m
A (M) = R).

Open question: Can the implication in(1.2)be changed into the equivalence?

The paper is dedicated to the study of transitive Lie algebroids with the trivial 1-rank
adjoint bundle of isotropy Lie algebrasg ∼= M × R. We discover that a locally conformal
symplectic (l.c.s.) structure defines such a Lie algebroid. We prove that this algebroid is
a TUIO-Lie algebroid if and only if the associated l.c.s. structure is a globally conformal
symplectic structure.

2. Main results

We recall[11,14]that a connectionλ : TM → A in a transitive Lie algebroidAdetermines
a covariant derivative∇ in the adjoint bundleg by the formula:∇Xν = [[λX, ν]] , ν ∈ Secg.
If the structural Lie algebrasg|x are abelian, then to all connectionsλ there corresponds the
same covariant derivative∇ in g, called thencanonicalor characteristic, and∇ is flat.

Each flat covariant derivative ing = M × R is of the form

∇Xf = ∂Xf + ω(X) · f,
whereω is a closed 1-differentiable form onM. Such closed one forms define new coho-
mology operators[6,8].

According to the general structure theorem[10,17], we obtain:

• Each transitive Lie algebroid onM with a trivial adjoint bundleg ∼= M×R is isomorphic
to

A = (M × R)⊕ TM (2.1)

with γ = pr2 : (M×R⊕TM → TM as the anchor and the bracket [[·, ·]] in SecA defined
via some flat covariant derivative∇ in M × R and a 2-formΩ ∈ Ω2(M) fulfilling the
Bianchi identity∇Ω = 0 in the following way:

[[(f,X), (g, Y)]] = (−Ω(X, Y)+ ∇Xg− ∇Yf, [X, Y ]).

The flat covariant derivative∇ is then characteristic.
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Therefore, the condition∇Ω = 0 is equivalent to dΩ = −ω ∧ Ω. Hence a transitive Lie
algebroid with trivial adjoint bundle is determined by the following data: a closed 1-form
ω and a 2-formΩ such that dΩ = −ω ∧Ω.

According to[6], the pair(−ω,Ω) determining Lie algebroid(2.1) is precisely an l.c.s.
structure on our manifold provided that the 2-formΩ is non-degenerate. Therefore our
transitive algebroid of rank 1 are a natural generalisation of the l.c.s. structure. When the
1-formω is exact the structure is called globally conformal symplectic. For more information
about these structures, see[6–8,23].

If α is a closed 1-form onM, it defines an operator (see[6,8])

dα : Ω∗(M) → Ω∗+1(M), γ �→ dγ + α ∧ γ.

Obviouslydα dα = 0 and the corresponding cohomology we denote byH∗
α(M).

• If two forms α andα′ are cohomologous inH1
DR(M), thenH∗

α(M) is isomorphic to
H∗
α′(M).

For completeness, we show this briefly. Ifα′ = α+dϕ/ϕ, ϕ > 0, then the linear isomorphism
on cyclesZα → Zα′ , γ �→ γ/ϕ, transformsdα-exact forms intodα

′
-exact forms giving an

isomorphism on cohomology. Notice that, the inverse homomorphism is given byZα′ →
Zα, γ

′ �→ ϕγ ′ = γ ′/(1/ϕ), andα = α′ − dϕ/ϕ = α′ + d(1/ϕ)/(1/ϕ). In particular ifα is
an exact form, thenH∗

α(M) ∼= H∗
DR(M).

The second fundamental theorem ondα-cohomology is the following (it was discovered
by Guedira and Lichnerowicz[8], for a short elementary proof see[6]).

Theorem 2.1. If α is not exact(M is connected and orientable, dimM = m, but M can be
compact or not), thenHm

α (M) = 0, i.e. the following differential equation:

∆ = dγ + α ∧ γ

has a global solutionγ ∈ Ωm−1(M) for each m-form∆ ∈ Ωm(M).

With this notation in mind, we prove the following theorem.

Theorem 2.2. Let M be a connected orientable m-manifold. If∇ is a flat covariant deriva-
tive ing = M×R and∇Xf = ∂Xf+ω(X)·f , for a closed1-differential formω ∈ Ω1(M),
then

(a) the Lie algebroid A, see(2.1), is a TUIO-Lie algebroid if and only if the formω is exact,
in particular, if H1(M) = 0, then A is a TUIO-Lie algebroid,

(b) H1+m
A (M) = Hm−ω(M),

(c) H1+m
A,c (M) = Hm−ω,c(M).

The above theorem permits us to demonstrate our main result, i.e. the following theorem.

Theorem 2.3. Let M be a compact orientable m-manifold and let A be a transitive Lie
algebroid with trivial1-rank adjoint bundle of isotropy Lie algebrasg ∼= M × R. Then A
is a TUIO-Lie algebroid if and only ifH1+m

A (M) 
= 0.
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Proof. We have only to demonstrate that the conditionH1+m
A (M) 
= 0 implies thatA is a

TUIO-Lie algebroid. IfH1+m
A (M) 
= 0.Theorem 2.2ensures thatHm−ω(M) 
= 0. In that case

the 1-form−ωmust be exact as for non-exact 1-formsαHm
α (M) = 0, cf.[6,8]. So according

to Theorem 2.2as the formω is exact, the Lie algebroidA is a TUIO-Lie algebroid. �

For local conformally symplectic structures we have the following corollary.

Corollary 2.1. Let (ω,Ω) be an l.c.s. structure on M. Then the associated transitive Lie
algebroid of rank1 is a TUIO-algebroid if and only if the l.c.s. structure is a global conformal
symplectic structure.

3. Proof of Theorem 2.2

First we have to show that the transitive Lie algebroid(2.1)described above is a TUIO-Lie
algebroid if and only ifω is exact. Iff is a dA-invariant, thenf is ∇-constant and, by
assuming thatf is non-singular, we obtainω = d(− ln(f)). Conversely, ifω = d(f̃ ), then

f = e−f̃ is a non-singularadA-invariant cross-section ofg = M × R.
Denote by pr1 : (M × R)⊕ TM → M × R the projection onto the first factor. Let dA be

the exterior derivative ofA-differential formsΩA(M) = Sec
∧
A�. For a homomorphism

of Lie algebroidsF : A′ → A over t : M ′ → M, the pullback of differential forms
F� : ΩA(M) → ΩA′(M ′) is defined by(F�Ψ)|x(v1, . . . , vk) = Ψ|tx(Fv1, . . . ,Fvk) and
the following equalitiesF�(Ψ ∧Φ) = F�Ψ ∧ F�Φ, F�(dAΨ) = dA′(Ψ) hold.

Represent the algebra ofA-differential forms forA = (M × R ⊕ TM as the skew tensor
product of the anticommutative graded algebras

ΩA(M) = Sec
(∧

(M × R)� ⊗ ∧
T�M

) = ∧
R

� ⊗Ω(M),

where
∧

R
� is the exterior algebra over a one-dimensional graded vector space (homo-

geneous of degree 1). Therefore, each(k + 1)-form Φk+1 ∈ Ωk+1
A (M) has the unique

representation of the form:

Φk+1 = 1 ⊗ ϕk+1 + 1� ⊗ ϕk, (3.1)

whereϕk andϕk+1 are differential forms onM of degreesk andk + 1, respectively, and
1� = idR. Clearly, 1⊗ϕk+1 = γ�ϕk+1 and1�⊗ϕk = pr�1 (ε

�)∧γ�ϕk for the cross-section
ε� of M × R

� defined byε�(x) ≡ 1�. The structure of the skew tensor product of the
anticommutative graded algebras

∧
R

� andΩ(M) is given by

(1 ⊗ ϕk+1 + 1� ⊗ ϕk) ∧ (1 ⊗ ϕl+1 + 1� ⊗ ϕl)

= 1 ⊗ (ϕk+1 ∧ ψl+1)+ 1� ⊗ (ϕk ∧ ψl+1 + (−1)k+1ϕk+1 ∧ ψl).

Via representation(3.1), we easily show that the differential dA in
∧

R
� ⊗Ω(M) is given

by

dA(1 ⊗ ϕk + 1� ⊗ ϕk−1) = 1 ⊗ (dϕk +Ω ∧ ϕk−1)+ 1� ⊗ (ω ∧ ϕk−1 − dϕk−1).
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To see this, we have, at first,

dA(1 ⊗ ϕk) = dA(γ
�ϕk) = γ�(dϕk) = 1 ⊗ dϕk

and

dA(1� ⊗ 1) = dA(pr�1 (ε
�)) = 1 ⊗Ω + 1� ⊗ ω.

Indeed,

dA(pr�1 (ε
�))((f,X), (g, Y))

= ∂Xg− ∂Yf − pr�1 (ε
�)([[(f,X), (g, Y)]])

= ∂Xg− ∂Yf − pr�1 (ε
�)(−Ω(X, Y)+ ∇Xg− ∇Yf, [X, Y ])

= ∂Xg− ∂Yf − (−Ω(X, Y)+ ∇Xg− ∇Yf)

= ∂Xg− ∂Yf +Ω(X, Y)− (∂Xg+ ω(X) · g)+ ∂Yf + ω(Y) · f
= Ω(X, Y)− ω(X) · g+ ω(Y) · f
= Ω(X, Y)+ pr�

1 (ε
�) ∧ pr�1 (ω)((f,X), (g, Y))

= (1 ⊗Ω + 1� ⊗ ω)((f,X), (g, Y)).

So

dA(1 ⊗ ϕk + 1� ⊗ ϕk−1)

= dA(1 ⊗ ϕk)+ dA((1
� ⊗ 1) ∧ (1 ⊗ ϕk−1))

= 1 ⊗ dϕk + dA(1� ⊗ 1) ∧ (1 ⊗ ϕk−1)− (1� ⊗ 1) ∧ dA(1 ⊗ ϕk−1)

= 1 ⊗ dϕk + (1 ⊗Ω + 1� ⊗ ω) ∧ (1 ⊗ ϕk−1)− (1� ⊗ 1) ∧ (1 ⊗ dϕk−1)

= 1 ⊗ (dϕk +Ω ∧ ϕk−1)+ 1� ⊗ (ω ∧ ϕk−1)− 1� ⊗ dϕk−1

= 1 ⊗ (dϕk +Ω ∧ ϕk−1)+ 1� ⊗ (ω ∧ ϕk−1 − dϕk−1).

We look at the graded algebra
∧

R
� ⊗Ω(M) as follows:

∧
R

� ⊗Ω(M) = (R ⊗Ω�(M))⊕ (R� ⊗Ω�−1(M)) ≡ Ω�(M)⊕Ω�−1(M),

1 ⊗ ϕk + 1� ⊗ ϕk−1 �→ (ϕk, ϕk−1),

(ϕk, ϕk−1) ∧ (ϕk, ψk−1) = (ϕk+1 ∧ ψl+1, ϕk ∧ ψl+1 + (−1)k+1ϕk+1 ∧ ψl).

Therefore the exterior derivative on the level ofk-forms is then given by the formula

dkA : Ωk(M)⊕Ωk−1(M) → Ωk+1(M)⊕Ωk(M),

dA(ϕ
k, ϕk−1) = (dϕk +Ω ∧ ϕk−1, ω ∧ ϕk−1 − dϕk−1).

In particular, dA(ϕk, ϕk−1) = 0 if and only if dϕk −Ω ∧ ϕk−1 and dϕk−1 = ω ∧ ϕk−1.
Letm = dimM. The maximal degree ofA-differential forms ism+ 1:

Ωm+1
A ≡ Ωm+1(M)⊗Ωm(M) = 0 ⊗Ωm(M) = Ωm(M)

and
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dmA : Ωm
A(M) ≡ Ωm(M)⊕Ωm−1(M) → Ωm(M) ≡ Ωm+1

A (M),

(ϕm, ϕm−1) �→ ω ∧ ϕm−1 − dϕm−1.

Put

d̄k−1 : Ωk−1(M) → Ωk(M), ϕk−1 �→ ω ∧ ϕk−1 − dϕk−1.

Clearly d̄ = −d−ω andd̄ ◦ d̄ = 0,

Hm+1
A (M) = Hm(Ω(M), d̄) = Hm

−ω(Ω(M), d̄)

andHm+1
A (M) does not depend on the 2-formΩ.

Analogously

Hm+1
A,c (M) = Hm

c (Ω(M), d̄) = Hm
−ω,c(Ω(M), d̄)

which ends the proof.
Therefore,Hm+1

A (M) = 0 if and only if, for eachm-form ∆ ∈ Ωm(M), there exists an
m− 1-formϕ ∈ Ωm−1(M) such that∆ = ω ∧ ϕ − dϕ.
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